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Abstract
Polynomial deformations of the Heisenberg algebra are studied in detail. Some
of their natural realizations are given by the higher order susy partners (and
not only by those of first order, as is already known) of the harmonic oscillator
for even-order polynomials. Here, it is shown that the susy partners of the
radial oscillator play a similar role when the order of the polynomial is odd.
Moreover, it will be proved that the general systems ruled by such kinds of
algebras, in the quadratic and cubic cases, involve Painlevé transcendents of
types IV and V, respectively.

PACS numbers: 11.30.Pb, 03.65.Ge, 03.65.Fd, 02.30.Gp

1. Introduction

Deformations of the standard Lie algebras play an important role in diverse interesting
problems in physics. We can mention just a couple of examples: the Higgs algebra [1]
and the applications to some exactly solvable Hamiltonians [2]. In these structures, some
of the commutators, which in the Lie case are linear combinations of the generators, are
replaced by certain non-linear functions [3, 4]. If the Lie algebra is associated with an initial
Hamiltonian, the deformed Lie algebra will lead to another Hamiltonian whose spectrum will
be a certain variant of the original one.

In this paper we are interested in polynomial Heisenberg algebras, i.e., we will study
systems for which the commutators of the Hamiltonian H with the annihilation and creation
(ladder) operators L± are the same as for the harmonic oscillator, but the commutator of L−

and L+ is an mth-order polynomial Pm(H) in H. Concrete realizations of these polynomial
algebras are built by taking L± as (m + 1)th differential operators [5–12]. For example,
the higher order supersymmetric (hsusy) partners of the harmonic oscillator provide such
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realizations for even values of m [11, 12]. Here, we will show that the hsusy partners of the
radial oscillator do the same when m is odd.

Another important question is to study, not just particular realizations, but the
characterization of the most general systems ruled by polynomial Heisenberg algebras. It
will be seen that the difficulty involved in this problem grows with increasing order of the
polynomial: for m = 0 and m = 1 (linear case) these systems are precisely the harmonic and
radial oscillators, respectively [5–7, 9]. We will analyse the next step by showing that, for
m = 2 and m = 3, the determination of the potentials requires us to solve Painlevé equations
of types IV and V, respectively [7, 8, 13]. Further steps, in which the presence of much
more complex differential equations is obvious, are out of the scope of the present work. It is
worth mentioning that, by reading back the results for the susy partners of the harmonic and
radial oscillators, explicit solutions of these Painlevé equations can be immediately supplied,
a simple fact which is not well known in the mathematical literature.

The paper is organized as follows. In section 2 we discuss the polynomial deformations
of the Heisenberg algebra, in particular, the possible spectra which can be found. In section 3
the higher order supersymmetric quantum mechanics (hsusy QM) will be introduced, and the
corresponding susy partners of the harmonic and radial oscillators will be analysed. We will
look for the general systems ruled by the polynomial Heisenberg algebras in section 4, where
we will realize the growing complexity arising as m is increased. We finish the paper with
some conclusions.

2. Polynomial deformations of the Heisenberg algebra

Polynomial Heisenberg algebras of mth order are deformations of the oscillator algebra, where
there are two standard commutation relationships

[H,L±] = ±L± (2.1)

and an atypical one characterizing the deformation,

[L−, L+] ≡ N(H + 1) − N(H) = Pm(H) (2.2)

where the generalized number operator is N(H) ≡ L+L−. The corresponding systems are
described by the Schrödinger Hamiltonian

H = −1

2

d2

dx2
+ V (x) (2.3)

where L± are (m + 1)th-order differential ladder operators, N(H) is a polynomial in H
factorized as

N(H) =
m+1∏
i=1

(H − E i ) (2.4)

and Pm(H) in (2.2) is an mth-order polynomial in H. The algebraic structure generated by
{H,L−, L+} provides information on the spectrum Sp(H) of H [6, 11, 12, 14]. Indeed, let
us consider the solution space of the (m + 1)th-order differential equation (the kernel KL−

of L−):

L−ψ = 0 ⇒ L+L−ψ =
m+1∏
i=1

(H − Ei )ψ = 0. (2.5)

As KL− is invariant under H, it is natural to select as the basis of KL− these solutions which
are simultaneously eigenstates of H with eigenvalues Ei

HψEi
= EiψEi

(2.6)
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Figure 1. Possible spectra for a Hamiltonian satisfying (2.1)–(2.4) and having s extremal states.
In case (a) s infinite ladders are obtained by acting with L+. In case (b) there are s − 1 infinite
ladders, and a finite ladder (the j th one) is built out of ψEj

, taking into account (2.7).

becoming the extremal states of the m + 1 mathematical ladders of spacing �E = 1 starting
from Ei . If s of these states are physically meaningful, {ψEi

, i = 1, . . . , s}, then by acting
iteratively with L+, s physical energy ladders can be constructed (see figure 1(a)).

It could happen [11] that for the ladder starting from Ej there is an l ∈ N such that

(L+)l−1ψEj
�= 0 (L+)lψEj

= 0. (2.7)

Then, by analysing L−(L+)lψEj
= 0 it is seen that another root of (2.4) must be Ek = Ej + l,

k ∈ {s + 1, . . . , m + 1}, j ∈ {1, . . . , s}. Hence, Sp(H) will contain s − 1 infinite ladders and
a finite one of length l, starting from Ej and ending at Ej + l − 1 (see figure 1(b)).

We conclude that the spectrum of systems described by polynomial Heisenberg algebras
of order m can have at most m + 1 infinite ladders. Note that pairs of ladder operators for the
harmonic oscillator system satisfying (2.1)–(2.4), with m > 0, can be constructed simply by
taking L− = aP (H), L+ = P(H)a†, where a†, a are the Heisenberg creation and annihilation
operators, and P(H) is a real polynomial in H [4]. In our context these deformations, that
we will call reducible, are artificial since for the same system we already have operators a†,
a obeying a much simpler algebra. We will be mainly interested in the search for intrinsic,
non-reducible, deformed algebras.

3. Higher order supersymmetric quantum mechanics

Let two Schrödinger Hamiltonians H0,Hk of the form (2.3) be intertwined by differential
operators B†, B of kth order [11, 12, 15–19]

HkB
† = B†H0 H0B = BHk (3.1)

where B† is the adjoint of B and the Hamiltonians are assumed to be self-adjoint. The standard
supersymmetry algebra

[Qi , Hss] = 0 {Qi , Qj } = δij Hss i, j = 1, 2 (3.2)

is realized by choosing

Q =
(

0 B†

0 0

)
Q† =

(
0 0
B 0

)
(3.3)

Q1 = Q† + Q√
2

Q2 = Q† − Q

i
√

2
Hss =

(
B†B 0

0 BB†

)
. (3.4)
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In this so-called kth-order supersymmetric quantum mechanics (k-susy QM) there is a
polynomial relationship between Hss and the diagonal matrix Hd involving H0 and Hk:

Hd =
(

Hk 0
0 H0

)
Hss = (Hd − ε1) · · · (Hd − εk). (3.5)

The standard susy QM is obtained through the first-order intertwining operator

B† = A
†
1 = 1√

2

[
− d

dx
+ α1(x, ε1)

]
(3.6)

which leads to the typical relation between the potentials V0(x) andV1(x),

V1(x) = V0(x) − α′
1(x, ε1) (3.7)

where α1(x, ε1) satisfies the Riccati equation:

α′
1(x, ε1) + α2

1(x, ε1) = 2[V0(x) − ε1]. (3.8)

For a given potential V0(x) and factorization energy ε1, the generation of V1(x) requires either
solving (3.8) or the corresponding Schrödinger equation

−u′′
1

2
+ V0(x)u1 = ε1u1 α1(x, ε1) = u′

1

u1
. (3.9)

On the other hand, if B† is of order k > 1 the potential Vk(x) can be found either through
Crum determinants [16] or by defining a sequence of Hamiltonians H0, . . . , Hk intertwined
by first-order operators A

†
i = 1√

2

[− d
dx

+ αi(x, εi)
]

[17, 18]:

HiA
†
i = A

†
iHi−1 i = 1, . . . , k. (3.10)

Taking into account (3.6)–(3.7), the ith potential reads Vi(x) = Vi−1(x) − α′
i (x, εi), where

α′
i (x, εi) + α2

i (x, εi) = 2[Vi−1(x) − εi]. (3.11)

By adopting the identifications

B† = A
†
k · · · A†

1 B = A1 · · · Ak (3.12)

it turns out that the final potential reads

Vk(x) = V0(x) −
k∑

i=1

α′
i (x, εi). (3.13)

The corresponding αi are found through the Bäcklund-type transformation [7, 8, 17, 18]:

αi(x, εi) = −αi−1(x, εi−1) − 2(εi−1 − εi)

αi−1(x, εi−1) − αi−1(x, εi)
. (3.14)

Its iterations show that the right-hand side of (3.13) depends just on k solutions α1(x, εi) of
the first Riccati equation (3.11) with factorization energies εi, i = 1, . . . , k.

The hsusy QM is useful to generate solvable potentials from a given initial one. Moreover,
we will see next that the hsusy partners of the harmonic and radial oscillators realize in a natural
way the polynomial Heisenberg algebras.

3.1. Higher order susy partners of the harmonic oscillator

Let us consider the harmonic oscillator potential V0(x) = x2/2. The corresponding energy
eigenvalues and eigenfunctions are E(0)

n = n + 1
2 , ψ(0)

n (x) ∝ exp
(− x2

2

)
Hn(x), n = 0, 1, . . . ,
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where Hn(x) are Hermite polynomials. The standard ladder operators a = 1√
2

(
d

dx
+ x

)
, a† =

1√
2

(− d
dx

+ x
)

connect the ψ(0)
n as follows: aψ(0)

n = √
nψ

(0)
n−1, a

†ψ(0)
n = √

n + 1ψ
(0)
n+1. The

algebra generated by {H0, a, a†} is of the type (2.1)–(2.4), with m = 0 and E1 = 1
2 .

In order to generate the hsusy partner potentials Vk(x) by creating k new levels ε1, . . . , εk

below E
(0)
0 , we need the general solution to the Schrödinger equation (3.9). Up to a constant

factor, we have [11]

u1(x) = exp

(
−x2

2

)[
1F1

(
1 − 2ε1

4
,

1

2
; x2

)
+ 2xν1

�
( 3−2ε1

4

)
�

( 1−2ε1
4

) 1F1

(
3 − 2ε1

4
,

3

2
; x2

)]
.

(3.15)

To avoid singularities for the 1-susy case we must have |ν1| < 1. The corresponding ν1

restriction in the higher order situation is, in general, different. The eigenfunctions of Hk are
found by applying the B† of (3.12) to the oscillator eigenfunctions. Thus, the spectrum is
Sp(Hk) = {

εi, E
(0)
n , i = 1, . . . , k, n = 0, 1, . . .

}
, a fact that can be explained by means of the

polynomial algebra (2.1)–(2.4). Indeed, the natural ladder operators for H ≡ Hk are [11, 20]

L− = B†aB L+ = B†a†B (3.16)

where B,B† are the intertwining operators of (3.12). As L− and L+ are of (2k + 1)th order, it
turns out that N(H) = L+L− is a (2k + 1)th-order polynomial in H, namely,

N(H) =
(

H − 1

2

) k∏
i=1

(H − εi − 1)(H − εi). (3.17)

The pairs of roots {εi, εi + 1} in (3.17) imply the existence of k one-step ladders in Sp(H),
one at each εi . There is also an infinite one starting from 1/2. Since [L−, L+] = P2k(H),
we see that the even-order polynomial algebras (2.1)–(2.4) are realized naturally by the hsusy
partners of the harmonic oscillator [11].

3.2. Higher order susy partners of the radial oscillator

Let us consider now the potential

V0(x) = x2

8
+

l(l + 1)

2x2
x > 0 l � 0. (3.18)

Throughout this paper we will refer to this system as the radial oscillator. It is known that
its spectrum can be built up algebraically using the following second-order ladder operators
A−, A+ [19, 21]:

A− = 1

2

(
d2

dx2
+ x

d

dx
+

x2

4
− l(l + 1)

x2
+

1

2

)
(3.19)

A+ = 1

2

(
d2

dx2
− x

d

dx
+

x2

4
− l(l + 1)

x2
− 1

2

)
. (3.20)

Two ladders can be constructed out of the two eigenstates of H0 annihilated by A−. The
physical ladder starts from the extremal state

ψ
(0)
E1

(x) ∝ xl+1 exp

(
−x2

4

)
(3.21)

which is square-integrable in [0,∞) and vanishes at the extremes of that interval. (The last is
the standard requirement for systems with a singularity at x = 0 of kind (3.18); we will adopt
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here this boundary condition in order to characterize the spectrum of H0.) The associated
eigenvalue is E1 = l

2 + 3
4 ≡ E

(0)
0 , and the next eigenstates are obtained by acting with powers

of A+ on ψ
(0)
E1

≡ ψ
(0)
0 . The second ladder departs from the other extremal state

ψ
(0)
E2

(x) ∝ x−l exp

(
−x2

4

)
(3.22)

of eigenvalue E2 = − l
2 + 1

4 . This state is unphysical because, at x = 0, ψ
(0)
E2

(x) diverges for
l > 0 and it does not vanish for l = 0. Thus, Sp(H0) = {

E(0)
n = n + l

2 + 3
4 , n = 0, 1, . . .

}
.

To implement now the susy techniques, we solve the Schrödinger equation (3.9) with the
potential (3.18). Up to a constant factor, the general solution is given by [19]

u1(x) = exp
(− x2

4

)
xl

[
1F1

(
1 − 2l − 4ε1

4
,

1 − 2l

2
; x2

2

)

+ ν1
�

( 3+2l−4ε1
4

)
�

(
3+2l

2

) (
x2

2

)l+ 1
2

1F1

(
3 + 2l − 4ε1

4
,

3 + 2l

2
; x2

2

)]
. (3.23)

To avoid 1-susy singularities in the domain x > 0, we must take ε1 � E
(0)
0 and

ν1 � −�
(

1
2 − l

)/
�

(
1
4 − l

2 − ε1
)
. This restriction on ν1 changes in the higher order case.

If susy QM is used to create k new levels εi � E
(0)
0 , we will have Sp(Hk) = {

εi, E
(0)
n =

n + l
2 + 3

4 , i = 1, . . . , k, n = 0, 1, . . .
}
, i.e., the polynomial algebra (2.1)–(2.4) rules the hsusy

partners of the radial oscillator, with natural ladder operators given by

L− = B†A−B L+ = B†A+B. (3.24)

As A± are second-order operators and B,B† are kth-order ones, then L− and L+ are of order
(2k + 2) implying that N(H) = L+L− is a (2k + 2)th-order polynomial in H:

N(H) =
(

H − l

2
− 3

4

)(
H +

l

2
− 1

4

) k∏
i=1

(H − εi)(H − εi − 1). (3.25)

The pair of roots {εi, εi +1} indicates the existence of k physical one-step ladders situated at εi .
There is also one infinite physical ladder with lower end E

(0)
0 . Since [L−, L+] = P2k+1(H), it

is seen that the hsusy partners of the radial oscillator realize naturally the polynomial algebras
(2.1)–(2.4) of odd order.

Up to now we have constructed systems ruled by the polynomial algebra (2.1)–(2.4)
through hsusy QM. Now, we will look for the most general systems described by such
deformed algebras.

4. Polynomial Heisenberg algebras: general systems

Let us determine the general systems described by the polynomial algebras (2.1)–(2.4). Since
for m greater than 3 the calculations are quite involved, we will analyse just the cases with
m = 0, 1, 2, 3.

4.1. Ladder operators of first order (m = 0)

We look for the general Hamiltonian (2.3) and first-order ladder operators

L+ = 1√
2

[
− d

dx
+ f (x)

]
L− = (L+)† (4.1)

satisfying equation (2.1). Thus, a system involving V, f , and their derivatives is obtained:

f ′ − 1 = 0 V ′ − f = 0. (4.2)
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Up to coordinate and energy displacements, it turns out that f (x) = x and V (x) = x2/2.
This potential has one equidistant infinite ladder starting from the extremal state ψE =
π−1/4 exp

(− x2

2

)
, which is annihilated by L− and it is a normalized eigenfunction of H

with eigenvalue E = 1/2. Here, the number operator is linear in H,N(H) = H − E , i.e.,
the general system obeying the polynomial Heisenberg algebra (2.1)–(2.4) with m = 0 is the
harmonic oscillator.

4.2. Second-order ladder operators (m = 1)

Let us suppose now that

L+ = 1

2

[
d2

dx2
+ g(x)

d

dx
+ h(x)

]
L− = (L+)†. (4.3)

Equation (2.1) leads then to a system of equations for V, g, h, and their derivatives:

g′ + 1 = 0 h′ + 2V ′ + g = 0

h′′ + 2V ′′ + 2gV ′ + 2h = 0.

The general solution (up to coordinate and energy displacements) is given by

g(x) = −x h(x) = x2

4
− γ

x2
− 1

2
V (x) = x2

8
+

γ

2x2
. (4.4)

The potentials (4.4) have two equidistant energy ladders (not necessarily physical) generated
by acting with the powers of L+ on the two extremal states:

ψE1 ∝ x
1
2 +

√
γ + 1

4 exp

(
−x2

4

)
ψE2 ∝ x

1
2 −

√
γ + 1

4 exp

(
−x2

4

)
. (4.5)

Let us recall that L−ψEi
= 0 = (H − Ei )ψEi

, where E1 = 1
2 + 1

2

√
γ + 1

4 , E2 = 1
2 − 1

2

√
γ + 1

4 .
Now N(H) is quadratic in H : N(H) = (H −E1)(H −E2). The potentials (3.18) are recovered
by making γ = l(l+1), l � 0. Thus, the general systems having second-order ladder operators
are described by the radial oscillator potentials (4.4).

4.3. Ladder operators of third order (m = 2)

Let L± be now third-order ladder operators, factorized by convenience as [12],

L+ = L+
1L

+
2 L− = L−

2 L−
1 (4.6)

where L−
1 = (L+

1)
†, L−

2 = (L+
2)

† and

L+
1 = 1√

2

[
− d

dx
+ f (x)

]
L+

2 = 1

2

[
d2

dx2
+ g(x)

d

dx
+ h(x)

]
. (4.7)

It is assumed the existence of an auxiliary Hamiltonian Ha which is intertwined with H as
follows:

HL+
1 = L+

1(Ha + 1) HaL
+
2 = L+

2H. (4.8)

Thus, we arrive at the following system of equations:

−f ′ + f 2 = 2V − 2E3 (4.9)

Va = V + f ′ − 1 = V + g′ (4.10)

g′′

2g
−

(
g′

2g

)2

− g′ +
g2

4
+

(E1 − E2)
2

g2
+ E1 + E2 − 2 = 2V. (4.11)
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By integrating (4.10) (up to a coordinate displacement) we get

f (x) = g(x) + x (4.12)

and using (4.11), (4.12) in (4.9), we find the following differential equation for g(x),

g′′ = g′2

2g
+

3

2
g3 + 4xg2 + 2(x2 + 2E + 1)g − 2�2

1

g
(4.13)

which is a Painlevé IV (PIV) equation with �1 = E1 − E2, E = E3 − 1
2 (E1 + E2)

[7, 8, 12, 13, 22, 23]. The potential V (x) can be found by substituting (4.12) into (4.9):

V (x) = x2

2
− g′

2
+

g2

2
+ xg + E3 − 1

2
. (4.14)

It has three energy ladders, each one with equidistant levels. The extremal states are such that
L−ψEi

= (H − Ei )ψEi
= 0, i = 1, 2, 3, and are given by

ψE1 ∝
(

g′

2g
− g

2
− �1

g
− x

)
exp

[∫ (
g′

2g
+

g

2
− �1

g

)
dx

]
(4.15a)

ψE2 ∝
(

g′

2g
− g

2
+

�1

g
− x

)
exp

[∫ (
g′

2g
+

g

2
+

�1

g

)
dx

]
(4.15b)

ψE3 ∝ exp

(
−x2

2
−

∫
g dx

)
. (4.15c)

Here the generalized number operator is cubic in H:

N(H) = (H − E1)(H − E2)(H − E3). (4.16)

Hence, we have a recipe for building systems ruled by second-order polynomial algebras
(2.1)–(2.4): first find a g(x) obeying the PIV equation (4.13); then calculate the potential,
using (4.14), and its three ladders from the extremal states (4.15a)–(4.15c). In order to test
the effectivity of this recipe, let us analyse some systems associated with particular PIV
solutions g(x).

(i) The harmonic oscillator. Let us consider the following solution of (4.13):

g(x) = −x − α(x) (4.17)

where E1 = E3, α(x) = u′/u satisfies the Riccati equation

α′(x) + α2(x) = x2 − 2ε (4.18)

ε = 2E + 1
2 = E3 − E2 + 1

2 , and u(x) is the Schrödinger solution given in (3.15). This g(x)

substituted in (4.14) provides

V (x) = x2

2
+ E2 − 1

2
(4.19)

which is the harmonic oscillator potential. The three extremal states (4.15a)–(4.15c) become

ψE1 = 0 ψE2 ∝ exp

(
−x2

2

)
ψE3 ∝ u(x). (4.20)

We see that the only physical ladder is the one generated from ψE2 . Here, we have a case
where the deformed algebra is reducible in the sense explained at the end of section 2. In fact,
it is easy to show that L− = a(H − E1).

(ii) The 1-susy oscillator partners. They arise for g(x) taking the form

g(x) = −x + α(x) (4.21)
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where α = u′/u satisfies (4.18), but now E1 = E3 + 1, ε = 2E + 3
2 = E3 − E2 + 1

2 , and u(x) is
again the Schrödinger solution (3.15). This g(x) leads to the exactly solvable potentials:

V (x) = x2

2
− α′(x) + E2 − 1

2
(4.22)

which are the 1-susy partners of the oscillator. The extremal states become

ψE1 ∝ B†a†u(x) ψE2 ∝ B† exp

(
−x2

2

)
ψE3 ∝ 1

u(x)
(4.23)

where B† is a first-order intertwiner, as in (3.6).
(iii) The k-susy oscillator partners with k > 1. Recently, a method has been found

which allows us to connect the k-independent one-step ladders of the k-susy Hamiltonians
H ≡ Hk of section 3.1, to build just a ladder with k steps [24]. The corresponding systems,
in principle ruled by the (2k)th-order deformed structures (2.1)–(2.4), will be described now
by a polynomial Heisenberg algebra of second order, supplying us with more solutions to the
PIV equation. The process consists in taking k transformation functions ui of an unphysical
ladder, i.e.,

H0ui = εiui ui+1 ∝ a†ui εi = ε1 + i − 1 < 1
2 i = 1, . . . , k (4.24)

with u1 being the Schrödinger solution in (3.15). With this choice, the k − 1 factorization
energies ε2 = ε1 + 1, . . . , εk = ε1 + k − 1 appear twice in (3.17), implying that the
natural (2k + 1)th-order ladder operator of section 3.1 can be written as the product of
(H − ε2) · · · (H − εk) times a third-order ladder operator [24]. This operator leads to the
PIV solution we are looking for. Indeed, from the extremal states in the previous two cases it
is clear that now

ψE1 ∝ B†a†uk(x) ψE2 ∝ B† exp

(
−x2

2

)
ψE3 ∝ W(u2, . . . , uk)

W(u1, . . . , uk)
(4.25)

where B† is the kth-order intertwining operator of (3.12), α = u′
1/u1 satisfies (4.18) but with

E1 = E3 + k, ε = 2E + 1
2 + k = E3 − E2 + 1

2 , and the expression for ψE3 will be justified in
the appendix. By comparing (4.15c) with (4.25) it turns out that the solution g(x) of the PIV
equation (4.13) reads now

g(x) = −x − [ln ψE3 ]′ = −x − [ln W(u2, . . . , uk)]
′ + [ln W(u1, . . . , uk)]

′ (4.26)

and the corresponding potential becomes (see an example in figure 2)

V (x) = x2

2
− [ln W(u1, . . . , uk)]

′′ + E2 − 1

2
. (4.27)

4.4. Fourth-order ladder operators (m = 3)

Let L± be fourth-order ladder operators factorized as in (4.6) and obeying (4.8) but now

L+
1 = 1

2

[
d2

dx2
+ g1(x)

d

dx
+ h1(x)

]
. (4.28)

An explicit calculation leads to the system of equations:

g′′
1

2g1
−

(
g′

1

2g1

)2

+ g′
1 +

g2
1

4
+

(E3 − E4)
2

g2
1

+ E3 + E4 = 2V (4.29)

Va = V − g′
1 − 1 = V + g′ (4.30)
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-4 0 4

-3

3

Figure 2. A 3-susy partner potential of the oscillator obtained from (4.27). Its spectrum consists
of a three-step ladder (dashed lines at −1.6, −0.6, 0.4) and an infinite ladder (its first four levels at
1/2, 3/2, 5/2, 7/2 are represented by continuous lines).

g′′

2g
−

(
g′

2g

)2

− g′ +
g2

4
+

(E1 − E2)
2

g2
+ E1 + E2 − 2 = 2V. (4.31)

From (4.30) we get, up to a coordinate displacement,

g1(x) = −g(x) − x. (4.32)

By substituting (4.31), (4.32) into (4.29) one arrives at the differential equation for g(x):

g′′ = (2g + x)

2g(g + x)
(g′)2 − g

x(g + x)
g′ + R(x, g) (4.33)

with

R(x, g) = [2xg(g + x)]−1[2xg5 + (5x2 + 8E + 4)g4 + 4x(x2 + 4E + 2)g3

+
[
x4 + 4(2E + 1)x2 + 4

(
�2

2 − �2
1

) − 1
]
g2 − 4�2

1x(2g + x)
]

(4.34)

where E = 1
2 (E3 + E4) − 1

2 (E1 + E2),�1 = E1 − E2 and �2 = E3 − E4. In order to identify
equation (4.33), let us make g = x/(w − 1) and then change the variable as z = x2. Thus,

d2w

dz2
=

(
1

2w
+

1

w − 1

) (
dw

dz

)2

− 1

z

dw

dz
+

(w − 1)2

z2

(
aw2 + b

w

)
+

cw

z
+

dw(w + 1)

w − 1
(4.35)

which is a Painlevé V equation (PV) with a = �2
1

2 , b = −�2
2

2 , c = −E − 1
2 , d = − 1

8 [8, 22].
The spectrum contains four independent equidistant ladders starting from the extremal states,

ψE1 ∝
[
g1

2

(
g′

2g
− g′

1

2g1
+

g + g1

2
− �1

g

)
+ E − �1

2

]
exp

[∫ (
g′

2g
+

g

2
− �1

g

)
dx

]
ψE2 ∝

[
g1

2

(
g′

2g
− g′

1

2g1
+

g + g1

2
+

�1

g

)
+ E +

�1

2

]
exp

[∫ (
g′

2g
+

g

2
+

�1

g

)
dx

]
ψE3 ∝ exp

[∫ (
g′

1

2g1
+

g1

2
− �2

g1

)
dx

]
ψE4 ∝ exp

[∫ (
g′

1

2g1
+

g1

2
+

�2

g1

)
dx

]
.

(4.36)

The number operator is a fourth-order polynomial in H:

N(H) = (H − E1)(H − E2)(H − E3)(H − E4). (4.37)
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Hence, given a solution w(z) of the PV equation (4.35) (or g(x) for (4.33)), a system
characterized by the third-order polynomial algebra (2.1)–(2.4) with potential (4.31) and
extremal states (4.36) is straightforwardly constructed. In order to test our recipe, let us
discuss some explicit examples.

(a) The radial oscillator. Let us consider the following solution of equation (4.33),

g(x) = −x

2
− l

x
− α(x) (4.38)

where E1 = E3, l = 2E + 1
2 = E4 − E2 + 1

2 and α(x) is a solution of the Riccati equation

α′(x) + α2(x) = 2

[
x2

8
+

l(l + 1)

2x2
− ε

]
(4.39)

where ε = (
�2

1 − �2
2

)/
(4E) = E3 − (E2 + E4)/2. The function α(x) can be written as

α(x) = u′/u, with u given by (3.23). The corresponding potentials (4.31) become

V (x) = x2

8
+

l(l − 1)

2x2
+
E4 + E2 − 1

2
(4.40)

i.e., the radial oscillator. Its corresponding extremal states (4.36) read

ψE1 = 0 ψE2 ∝ x−(l−1) exp

(
−x2

4

)
(4.41a)

ψE3 ∝
[
u′ −

(
x

2
− l

x

)
u

]
ψE4 ∝ xl exp

(
−x2

4

)
. (4.41b)

The fact that the radial oscillator is a system described by a Lie algebra and, at the same time,
by a deformed algebra, tells us that the latter must be reducible in the same way as mentioned
in example (i).

(b) The 1-susy partners of the radial oscillator. If we take now

g(x) = −x

2
− (l + 1)

x
+ α(x) (4.42)

it turns out that α = u′/u satisfies again the Riccati equation (4.39), but now E1 = E3 + 1, l =
2E + 1

2 = E4 − E2 − 1
2 , ε = (

�2
1 − �2

2

)/
[4(E + 1)] = E3 − (E2 + E4 − 1)/2, and u given in

(3.23). The potentials (4.31) now become

V (x) = x2

8
+

l(l + 1)

2x2
+
E2 + E4 − 1

2
− α′(x) (4.43)

i.e., the 1-susy partners of the radial oscillator. The four extremal states read

ψE1 ∝ B†A+u ψE2 ∝ B†
(

x−l exp

(
−x2

4

))
(4.44a)

ψE3 ∝ 1

u
ψE4 ∝ B†

(
xl+1 exp

(
−x2

4

))
(4.44b)

where B† is the first-order intertwiner and A+ is the second-order ladder operator in (3.20).
(c) The k-susy radial oscillator partners with k > 1. As in the example (iii) of section 4.3,

a reduction process allows us to assemble the one-step ladders of certain k-susy partner
Hamiltonians of the radial oscillator. Then, the natural (2k + 1)th-order polynomial algebra
ruling H ≡ Hk reduces to a third-order one, leading then to solutions of the PV equation.



10360 J M Carballo et al

Indeed, let us take the k transformation functions once again as the steps of an unphysical
ladder of the radial oscillator potential V0(x) in (3.18), i.e.,

H0ui = εiui ui+1 ∝ A+ui εi = ε1 + i − 1 <
l

2
+

3

4
i = 1, . . . , k. (4.45)

From the previous example (b), one immediately finds the four extremal states associated with
the reduced third-order polynomial algebra,

ψE1 ∝ B†A+uk ψE2 ∝ B†
(

x−l exp

(
−x2

4

))
ψE3 ∝ W(u2, . . . , uk)

W(u1, . . . , uk)
(4.46a)

ψE4 ∝ B†
(

xl+1 exp

(
−x2

4

))
∝ W

(
u1, . . . , uk, x

l+1 exp
(− x2

4

))
W(u1, . . . , uk)

(4.46b)

where now B† is the kth-order intertwining operator of (3.12), α = u′
1/u1 satisfies again (4.39)

but with ε = (
�2

1 − �2
2

)/
[4(E + k)] − (k − 1)/2 = E3 − (E2 + E4 − 1)/2, E1 = E3 + k, l =

2E − 1/2 + k = E4 − E2 − 1
2 , and u1 is the solution of (3.23). The last formula in (4.46a) will

be discussed in the appendix. By comparing the expressions for ψE3 and ψE4 in (4.36) and
(4.46a), (4.46b), we immediately obtain

g1(x) = 2�2[
ln

(ψE4
ψE3

)]′ = 2�2W(u2, . . . , uk)W
(
u1, . . . , uk, x

l+1 exp
(− x2

4

))
W

(
W(u2, . . . , uk),W

(
u1, . . . , uk, xl+1 exp

(− x2

4

))) . (4.47)

Therefore,

g(x) = −x − 2�2[
ln

(ψE4
ψE3

)]′ = −x − 2�2W(u2, . . . , uk)W
(
u1, . . . , uk, x

l+1 exp
(− x2

4

))
W

(
W(u2, . . . , uk),W

(
u1, . . . , uk, xl+1 exp

(− x2

4

)))
(4.48)

which is a solution of (4.33) and it is directly related to the corresponding PV solution through
w(z) = 1 +

√
z/g(

√
z). Finally, the potentials (4.31) are

V (x) = x2

8
+

l(l + 1)

2x2
− [ln W(u1, . . . , uk)]

′′ +
E2 + E4 − 1

2
. (4.49)

5. Conclusions

In this paper, we have presented a short overview of the polynomial Heisenberg algebras and
explained how the methods of hsusy QM can be useful in this subject. So, we have shown
that the higher order supersymmetric partners of the harmonic and radial oscillators provide
the simplest non-trivial realizations of those deformed structures [11, 24]. We have analysed
as well the general systems ruled by the polynomial Heisenberg algebras when the differential
ladder operators are of order one, two, three and four (m = 0, 1, 2, 3 respectively), and we
have proved that the corresponding potentials involve Painlevé transcendents of types IV and
V in the last two cases (see also [7, 8, 13]). Although parts of the results included here
were known in different contexts, we thought it was the right time to join them together in
a self-contained way and with a unified viewpoint. We must remark, however, a number of
original results. Let us mention, for instance, the treatment of the whole section 4.4 devoted
to the Painlevé V equation. Also, we have explored and generalized a reduction process using
the k-susy QM applied to the harmonic [24] and radial oscillators to construct a class of exact
solutions to PIV and PV equations. The importance of our technique can be appreciated by
comparing it with more involved methods used to get PIV and PV solutions (see, for instance,
[23]). The existence of other kinds of solutions, although worth studying, is outside the scope
of this paper (see, however, [25]).
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Appendix

This appendix is devoted to justify the formulae which have been used in (4.25) and (4.46a).
As a particular case of (3.1), let us consider a 2-susy transformation B† intertwining H0

and H2 as H2B
† = B†H0, generated by the two transformation functions ui such that

H0ui = εiui, i = 1, 2. We can express B† in terms of ui in two ways, either by means
of Wronskians or through two consecutive 1-susy transformations,

B†ψ = W(u1, u2, ψ)

W(u1, u2)
(A.1)

≡ 1

2

(
d

dx
−

(
ut

2

)′

ut
2

) (
d

dx
− u′

1

u1

)
ψ (A.2)

≡ 1

2

(
d

dx
−

(
ut

1

)′

ut
1

) (
d

dx
− u′

2

u2

)
ψ (A.3)

where ut
1 is the result of the 1-susy transformation onto u1 when u2 is employed, and similarly

for ut
2, namely ut

1 ∝ W(u1, u2)/u2 and ut
2 ∝ W(u1, u2)/u1. From any of the equations (A.1)

or (A.2), (A.3), we can check that B†ui = 0, i = 1, 2. By taking the adjoint of B† we get
the operator B realizing the intertwining in the opposite way, H0B = BH2. If we choose
equations (A.2), (A.3), the following expressions for B are obtained:

B ≡ 1

2

(
d

dx
+

u′
1

u1

)(
d

dx
+

(
ut

2

)′

ut
2

)
(A.4)

≡ 1

2

(
d

dx
+

u′
2

u2

)(
d

dx
+

(
ut

1

)′

ut
1

)
. (A.5)

Now, from (A.4), (A.5) we find easily the eigenfunctions H2ũi = εi ũi which are annihilated
by B. They are given by

ũ1 = 1

ut
1

∝ u2

W(u1, u2)
ũ2 = 1

ut
2

∝ u1

W(u1, u2)
. (A.6)

If we repeat exactly the same arguments for an nth-order susy transformation HnB
† = B†H0,

generated by n transformation functions ui such that H0ui = εiui, i = 1, . . . , n and B†ui = 0,
then the adjoint operator B performing the intertwining in the opposite direction is characterized
by n eigenfunctions Hnũi = εi ũi , i = 1, . . . , n such that Bũi = 0. These eigenfunctions are
given by

ũ1 = 1

ut
1

= W(u2, . . . , un)

W(u1, . . . , un)

...

ũn = 1

ut
n

= W(u1, . . . , un−1)

W(u1, . . . , un)

(A.7)



10362 J M Carballo et al

where ut
i is the result of an (n−1)th-order susy transformation onto ui when the transformation

functions are the n − 1 remaining uj , j = 1, . . . , i − 1, i + 1, . . . , n. These are just the
expressions appearing in (4.25) and (4.46a).
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